رسته‌ها

Geometric Theory of Discrete Nonautonomous Dynamical Systems

Geometric Theory of Discrete Nonautonomous Dynamical Systems
امتیاز دهید
5 / 3
با 1 رای
نویسنده:
امتیاز دهید
5 / 3
با 1 رای
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
علیمولا
آپلود شده توسط: علیمولا
۱۳۹۹/۰۳/۰۳
اطلاعات نسخه الکترونیکی
تعداد صفحات:
430
فرمت:
PDF

کتاب‌های مرتبط

درج دیدگاه مختص اعضا است! برای ورود به حساب خود اینجا و برای عضویت اینجا کلیک کنید.

دیدگاه‌های کتاب الکترونیکی Geometric Theory of Discrete Nonautonomous Dynamical Systems

تعداد دیدگاه‌ها:
0
دیدگاهی درج نشده؛ شما نخستین نگارنده باشید.
افزودن نسخه جدید
انتخاب فایل
comment_comments_for_the_file